1. Число лейкоцитов определяется прямым способом. Однако измеряемые клетки необязательно идентичны лейкоцитам, которые подсчитывают в ходе ручного микроскопического исследования,— это скорее клетки, соответствующие определенным критериям данного прибора, о чем будет сказано ниже. Критерии были подобраны так, чтобы обеспечить удовлетворительную корреляцию результатов ручного и автоматизированного исследований. Дублирующаяся ошибка составляет 0,3-109/л.

2. Автоматизированное определение лейкоцитарной формулы в настоящее время осуществляется с помощью нескольких различных методов. Каждый метод использует определенные новые критерии идентификации различных классов; все эти методы обладают большей точностью и скоростью, чем ручные методы, но ни один из них не может полностью заменить изучение окрашенного мазка в световом микроскопе. Кроме того, использование новых критериев распознавания клеточных типов приводит и к появлению новых представлений об аномалиях, с которыми придется считаться по мере накопления опыта использования автоматизированных методов.

В приборах серии Coulter в качестве критерия используются размеры ядра ядросодержащих клеток: специальный ли-зирующий агент разрывает клеточную мембрану, и через образовавшийся разрыв вытекает большая часть цитоплазмы. Такие приборы дают четыре относительно изолированных пика. Самый малый соответствует ядросодержащий клеткам эритроидного ряда. Этот пик становится различимым, если такие клетки составляют около 5% всего количества лейкоцитов. Следующий пик приходится на лимфоциты с объемом 60—8 0 фл. Третий пик — «мононуклеарные» клетки с объемом 110—170 фл; эта категория включает атипичные лимфоциты, моноциты, бласты, эозино-филы, базофилы и миелоциты. Наконец, гранулоциты появляются обычно в зоне свыше 2 00 фл. Несмотря на некоторое совпадение результатов, процент лимфоцитов и гранулоцитов, определенных с помощью этой методики, коррелирует с результатами микроскопического исследования (коэффициент корреляции свыше 0,98). Однако корреляция результатов этих методов при определении процентного содержания мононуклеарных клеток гораздо меньше (коэффициент корреляции r = 0,84).

В приборах серии Technicon используется комбинация размеров клетки и содержания в ней миелопероксидазы для построения двухмерной скетограммы. Различные субпопуляции соответствуют лимфоцитам, моноцитам, гранулоцитам, эозинофи-лам и большим неокрашенным клеткам, к категории последних относятся и бласты. Коэффициент корреляции результатов определения процентного соотношения гранулоцитов, лимфоцитов и эозинофилов на приборах Technicon и с помощью ручного метода составляет 0,95 для гранулоцитов и, возможно, столь же высок для эозинофилов. Кроме того, по характерным свойствам нейтрофилов можно выявить наследственный и приобретенный дефицит миелопероксидазы. Ядросодержащие клетки эритроидно-го ряда обычно не выявляются.

В приборах серии Ortho для построения скетограмм гранулоцитов, лимфоцитов и моноцитов используется комбинация рассеянного света — прямого и падающего под углом 90°. Пока точно неизвестно, насколько результаты автоматизированного определения указанных клеток коррелируют с результатами ручного подсчета.

Система Hematrak основывается на совершенно ином принципе. Предыдущие три системы используют принцип проточной цитометрии: клетки в суспензии анализируются в процессе их последовательного прохождения через датчик. Описанные критерии были выбраны потому, что их могут регистрировать датчики приборов проточной цитометрии. Система Hematrak является автоматизированным анализатором изображения: прибор, сканируя мазок периферической крови, идентифицирует лейкоциты с помощью набора критериев распознавания изображения, которые в определенной мере приближаются к критериям обычного оптического исследования. Этот метод позволяет распознавать все те типы клеток, что и обычная микроскопия. Вместе с тем он не так быстр, как проточная цитометрия, и требует использования отдельного прибора, не являющегося частью обычного автоматизированного анализатора крови.

Преимущества автоматизированных методов определения лейкоцитарной формулы — скорость и воспроизводимость. Однако, как уже упоминалось, ни один из автоматизированных методов не способен различать нейтрофильные гранулоциты как отдельный тип лейкоцитов. Пока неясно, насколько важен этот недостаток. Автоматизированное определение лейкоцитарной формулы в настоящее время является методом скрининга: при получении совершенно нормальных результатов вряд ли стоит вручную подсчитывать формулу с помощью микроскопа или во всяком случае вряд ли ее стоит повторять. Однако с помощью автоматизированных методов не удается обнаружить редко встречающиеся нарушения и морфологические варианты. Для выявления таких аномалий необходимо исследовать мазок периферической крови.

МАЗОК ПЕРИФЕРИЧЕСКОЙ КРОВИ

Изучение мазка периферической крови остается важной частью гематологического исследования. Клиницисту следует учесть, что к изучению мазка имеет смысл приступать после получения результатов автоматизированного анализа крови. Время, затрачиваемое на изучение мазка, необходимо для получения дополнительной информации, а не для дублирования данных автоматизированного анализа. В целом автоматизированный анализ крови гораздо эффективнее ручных методов при определении средних величин и обычных количественных характеристик: эритроцитарных индексов, количества клеток, размеров тромбоцитов и процентного соотношения лимфоцитов и гранулоцитов. Однако автоматизированный анализатор в лучшем случае малонадежен, а часто совершенно непригоден для выявления редких аномалий: ядросодержащих клеток эритроидного ряда, незрелых гранулоцитов, фрагментов эритроцитов.

Последовательность изменений СОТ || Оглавление || Эритроциты

1

Яндекс.Метрика